Optimizing System Reliability in Additive Manufacturing Using Physics-Informed Machine Learning

نویسندگان

چکیده

Fused filament fabrication (FFF), an additive manufacturing process, is emerging technology with issues in the uncertainty of mechanical properties and quality printed parts. The consideration all main interaction effects when changing print parameters not efficiently feasible, due to existing stochastic dependencies. To address this issue, a machine learning method developed increase reliability by optimizing input predicting system responses. A structure artificial neural networks (ANN) proposed that predicts response based on observations similar systems. In way, significant for reliable can be determined. ANN part physics-informed pretrained domain knowledge (DK) require fewer full training. This includes theoretical idealized systems measured data. New predictions made without retraining but using further from predicted system. Therefore, are available real time, which precondition use industrial environments. Finally, application bed adhesion FFF discussed evaluated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-time Scheduling of a Flexible Manufacturing System using a Two-phase Machine Learning Algorithm

The static and analytic scheduling approach is very difficult to follow and is not always applicable in real-time. Most of the scheduling algorithms are designed to be established in offline environment. However, we are challenged with three characteristics in real cases: First, problem data of jobs are not known in advance. Second, most of the shop’s parameters tend to be stochastic. Third, th...

متن کامل

Machine Reliability in a Dynamic Cellular Manufacturing System: A Comprehensive Approach to a Cell Layout Problem

The fundamental function of a cellular manufacturing system (CMS) is based on definition and recognition of a type of similarity among parts that should be produced in a planning period. Cell formation (CF) and cell layout design are two important steps in implementation of the CMS. This paper represents a new nonlinear mathematical programming model for dynamic cell formation that employs the ...

متن کامل

Optimizing Production Manufacturing Using Reinforcement Learning

Many industrial processes involve making parts with an assembly of machines, where each machine carries out an operation on a part, and the finished product requires a whole series of operations. A well-studied example of such a factory structure is the transfer line, which involves a sequence of machines. Optimizing transfer lines has been a subject of much study in the industrial engineering ...

متن کامل

Modeling of Weld Bead Geometry Using Adaptive Neuro-Fuzzy Inference System (ANFIS) in Additive Manufacturing

Additive Manufacturing describes the technologies that can produce a physical model out of a computer model with a layer-by-layer production process. Additive Manufacturing technologies, as compared to traditional manufacturing methods, have the high capability of manufacturing the complex components using minimum energy and minimum consumption. These technologies have brought about the possibi...

متن کامل

Optimizing Leakage Power using Machine Learning

As transistor technology nodes continue to scale into deep sub-micron processes, leakage power is becoming an increasingly large portion of the total power. This has been true for many years now, ever since deep submicron processes became available. In addition, more recently, computing is becoming increasingly mobile, where minimal power is of paramount importance. As a result, companies are b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machines

سال: 2022

ISSN: ['2075-1702']

DOI: https://doi.org/10.3390/machines10070525